AMR in the Clinical Environment

Surbhi Malhotra-Kumar Fellow, European Society of Clinical Microbiology & Infectious Diseases

May 26, 2025

University of AntwerpLaboratory of Medical Microbiology

Laboratory of Medical Microbiology Vaccine and Infectious Disease Institute

Conflict of Interest: None

Collaborative projects and funding from with bioMerieux, Astra-Zeneca, Pfizer, Janssen, BD Diagnostics, Merck Sharpe & Dohme, AiCuris

Each year, 4.3 million patients in hospitals in the EU are affected by healthcare-associated infections

- Pneumonia and LRTI (incl. COVID-19): 29.3%
- Urinary tract infections : 19.2%
- Surgical site infections : 16.1%
- Bloodstream infections : 11.9%

34.2% 12.7% 11.7% 26.9%
11.7%
26.9%
20.370
9%
10%
12.9%
7.9%
3.2%
9.%
5.3%
10.3%
1.2%

https://www.ecdc.europa.eu/en/publications-data/PPS-HAI-AMR-acute-care-europe-2022-2023

LRTI: Low respiratory tract infections

Multi-drug resistant key pathogens

ESBL-E: Extended-spectrum beta-lactamase-producing Enterobacterales

MRSA: methicillin-resistant Staphylococcus aureus

VRE: Vancomycin resistant Enterococci

CPE: carbapenemase producing Enterobacterales

CPPA: Carbapenemase producing Pseudomonas aeruginosa

CRAB: Carbapenem resistant Acinetobacter baumannii

WHO BPPL 2017 WHO BPPL 2024

Klebsiella pneumoniae, carbapenem-resistant

Salmonella Typhi, fluoroquinolone-resistant Shigella species, fluoroguinolone-resistant Enterococcus faecium, vancomycin-resistant Pseudomonas aeruginosa, carbapenem-resistant Non-typhoidal Salmonella, fluoroquinolone-resistant Enterobacter species, carbapenem-resistant Neisseria gonorrhoeae, fluoroquinolone-resistant Staphylococcus aureus methicillin-resistant Enterobacter species, thirdgenerationcephalosporin-resistant Citrobacter species, thirdgeneration cephalosporin-resistant Proteus species, third-generation cephalosporin-resistant Serratia species, third-generation cephalosporin-resistant Neisseria gonorrhoeae, thirdgeneration cephalosporin-resistant

Group A Streptococci, macrolide-resistant Streptococcus pneuronide, macrolide-resistant Haemophilus influenzae, ampicillin-resistant Morganella species, thirdgeneration cephalosporin-resistant

Group B Streptococci, penicillin-resistant

Escherichia coli, third-generation cephalosporin-resistant Acinetobacter baumannii, carbapenem-resistant Mycobacterium tuberculosis, rifampicin-resistant Escherichia coli, carbapenem-resistant Klebsiella pneunoniae, thirdgeneration cephalosporin-resistant

0	Acinetobacter baumannii,	
-	carbapenem-resistant Pseudomonas aeruginosa,	
2	carbapenem-resistant	
3	Klebsiella pneumoniae, third- generation cephalosporin-resistant	
4	Escherichia coli, third-generation cephalosporin-resistant	
5	Klebsiella pneumoniae, carbapenem-resistant	
6	Enterobacter species, third- generation cephalosporin-resistant	
7	Serratia species, third-generation cephalosporin-resistant	
8	Proteus species, third-generation cephalosporin-resistant	
9	Enterobacter species, carbapenem-resistant	
	Escherichia coli,	
10	carbapenem-resistant	
11	Enterococcus faecium, vancomycin-resistant	
12	Providencia species, third- generation cephalosporin-resistant	<u> </u>
13	Staphylococcus aureus methicillin-resistant	
14	Citrobacter species, third- generation cephalosporin-resistant	
15	<i>Helicobacter pylori,</i> clarithromycin-resistant	
16	<i>Morganella</i> species, third- generation cephalosporin-resistant	
17	Campylobacter species, fluoroquinolone-resistant	
18	<i>Salmonella</i> Typhi, fluoroquinolone-resistant	
19	Neisseria gonorrhoeae, fluoroquinolone-resistant	
20	Streptococcus pneumoniae, macrolide-resistant	
21	Non-typhoidal <i>Salmonella</i> , fluoroquinolone-resistant	
22	Neisseria gonorthoeae, third- generation cephalosporin-resistant	
23	Haemophilus influenzae, ampicillin-resistant	
24	Staphylococcus aureus, Vancomycin-resistant	
25	Shigella species,	
26	fluoroquinolone-resistant Streptococcus pneumonide,	
20	penicillin non-susceptible	

WHO Priority Pathogens

Source: WHO Bacterial Priority Pathogens List, 2024

Removed Added

AMR transmission in a One Health context: Plasmid mediated colistin resistance, mcr

€ 1 9 €

Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study

Yi-Yun Liu*, Yang Wang*, Timothy R Walsh, Ling-Xian Yi, Rong Zhang, James Spencer, Yohei Doi, Guobao Tian, Baolei Dong, Xianhui Huang, Lin-Feng Yu, Danxia Gu, Hongwei Ren, Xiaojie Chen, Luchao Ly, Dandan He, Hongwei Zhou, Zisen Liang, Jian-Hua Liu, Jianzhong Shen

15-20% in animals (Pigs/Chicken) 5-25% in food animal products <1% in hospital patients

RAPID COMMUNICATIONS

Identification of a novel plasmid-mediated colistinresistance gene, *mcr-2*, in *Escherichia coli*, Belgium, June 2016

Escherichia o program

BB Xavier 123, C Lammens 123, R Ruhal 123, S Kumar-Singh 134, P Butaye 567, H Goossens 123, S Malhotra-Kumar 123

- 1. Laboratory of Medical Microbiology, Wilrijk, Belgium
- 2. Vaccine & Infectious Disease Institute, Wilrijk, Belgium
- University of Antwerp, Wilrijk, Belgium
- . Molecular Pathology group, Cell Biology and Histology, Wilrijk, Belgium Ghent University, Faculty of Veterinary Medicine, Ghent, Belgium
- CODA-CERVA, Brussels, Belgium
- 7. Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis

- Prevalence of mcr-2 in porcine colistin-resistant E. coli (11/53) in Belgium was higher than that of *mcr-1* (7/53)
- 1,617 bp phosphoethanolamine transferase harboured on a highly transferable IncX4 plasmid
- Shares \approx 80% identity at protein level and 77% at nucleotide level with *mcr-1*

AMR transmission in a One Health context: *mcr* spread highlights the role of the plasmid backbone in aiding transmissibility and inter-species *transfer*

A dynamic reservoir in the clinical environment: the patient

- Increasing intestinal colonization by ESBL-E. coli increased 3-fold from 7% in 2001-2005 to 25.7% in 2016-2020 among inpatients and 10-fold from 2.6% to 26.4% within community settings
- Parallel increased incidence of ESBL-E infections from 2012 to 2017 by 53.3% (from 37.55 to 57.12 77 cases per 10,000 hospitalizations), primarily attributed to an increase in community-acquired infections

New tools: 3rd generation sequencing

Tracing carriage, acquisition, and transmission of ESBL-producing Escherichia coli over two years in a tertiary care hospital

Nguyen et al, 2024, Genome Medicine

High prevalence of nosocomial acquisition of ESBL-E in a non-ICU setting

- 12.3% (456/3703) patients were ESBLpositive-at-admission (PA-ESBL).
- 10.6% (240/2268) ESBL-negative-atadmission (NA-ESBL) patients with follow-up samples acquired ESBL-E (HA-ESBL), with an incidence density rate of 7.96 cases/1000 patient-day, notably higher in patients receiving antibiotics (P < 0.001).

Tracing carriage, acquisition, and transmission of ESBL-producing Escherichia coli over two years in a tertiary care hospital

- PA- and HA-ESBL patients developed significantly more ESBL-E infections than ESBL-free patients (P < 0.001).
- Sequenced ESBL-Ec showed high clonal diversity dominated by the multidrugresistant and highly virulent ST131 clade, C2/H30-Rx
- Among ESBL-Ec infections, 60% (18/30) were endogenous.

Patient-to-patient putative clonal transmissions at the ward level in both cohorts B

General Medicine Wars eral Surgery Ward

ritious Diseases War

DA.1555 matient

HA-ESBI natien

Colonising strain Infecting strain

with c10 GAP distance

Connection between citain

- Putative transmission clusters identified among ST131 and other STs by SNP distance ≤ 10
- Supported by strong epidemiological links: patients stayed in the same wards (represented by the colours of patient ID) and with overlapping periods of hospitalisation durations represented by blue and pink bars for PA- and HA-ESBL patients, respectively
- Direct between-patients transmission clusters (*n* = 21) involved 23.9% (48/201) of patients

Nguyen et al, 2024, Genome Medicine

Risk factors for AMR gut colonization of neonates Horizon 2020 Programme

- Infants on neonatal units are at risk of severe bacterial infections, particularly those born at <32 weeks
- Infants colonised by resistant bacteria have an increased risk of sepsis
- 24 sites in 8 countries conducted 4 cross-sectional surveys in a onemonth period and collected clinical data, stool samples
- Stool samples were analysed by PCR
- Gene targets of interest in stool samples
 - Carbapenem resistance: blaKPC, blaNDM, blaVIM, blaIMP, blaOXA-48
 - Extended-spectrum beta-lactamase: blaCTX-M group1, blaCTX-M group9
 - Vancomycin resistance: vanA, vanB

Risk factors for AMR gut colonization of neonates

- Resistant bacterial colonisation was low overall (20%, 301/1447 samples)
- Significant variation between units and countries (p<0.001)
- Both low- and high-risk infants were colonised
- Unit-level IPC interventions target both direct and indirect effects of colonisation regardless of risk status
- Interventions focusing only on infants at high risk of sepsis will miss significant resistant bacterial colonisation in low-risk infants

Horizon 2020 Programme

Contamination of inanimate surfaces as a source of HAI

- Inanimate surfaces may be contaminated by a range of HAI pathogens
- This contamination plays a role in acquisition of HAI via direct or indirect contact with contaminated surfaces
- Contamination with clinically relevant pathogens may persist for several months
- Duration of contamination is influenced by several factors
- 20% of HAI outbreaks can be attributed to an environmental source

How long do nosocomial pathogens persist on inanimate surfaces?

Table 1: Persistence of clinically relevant bacteria on dry inanimate surfaces.

Type of bacterium	Duration of persistence (range)	
Acinetobacter spp.	3 days to 5 months	
Bordetella pertussis	3 - 5 days	
Campylobacter jejuni	up to 6 days	
Clostridium difficile (spores)	5 months	
Chlamydia pneumoniae, C. trachomatis	≤ 30 hours	
Chlamydia psittaci	15 days	
Corynebacterium diphtheriae	7 days - 6 months	
Corynebacterium pseudotuberculosis	I-8 days	
Escherichia coli	1.5 hours - 16 months	
Enterococcus spp. including VRE and VSE	5 days - 4 months	
Haemophilus influenzae	12 days	
Helicobacter pylori	≤ 90 minutes	
Klebsiella spp.	2 hours to > 30 months	
Listeria spp.	I day - months	
Mycobacterium bovis	> 2 months	
Mycobacterium tuberculasis	I day - 4 months	
Neisseria gonorrhoeae	I – 3 days	
Proteus vulgaris	I - 2 days	
Pseudomonas aeruginosa	6 hours - 16 months: on dry floor: 5 weeks	
Salmonella typhi	6 hours - 4 weeks	
Salmonella typhimurium	10 days - 4.2 years	
Salmonella spp.	I day	
Serratia marcescens	3 days - 2 months; on dry floor: 5 weeks	
Shigella spp.	2 days - 5 months	
Staphylococcus aureus, including MRSA	7 days - 7 months	
Streptococcus pneumoniae	I - 20 days	
Streptococcus pyogenes	3 days - 6.5 months	
Vibrio cholerae	I – 7 days	

Cartography of opportunistic pathogens and AMR genes in a tertiary hospital environment

- Repeated sampling (up to 1.5 years apart) of 179 sites associated with 45 beds
- Both shotgun metagenomics and culture enriched long read metagenomics was performed
- Phylogenetics identified a few multidrugresistant strains as being widely distributed and stably colonizing across sites.
- Comparisons with clinical isolates indicated that such microbes can persist in hospitals for extended periods (>8 years), to opportunistically infect patients

Uncovering hidden antimicrobial resistance patterns within the hospital microbiome

Chng et al, 2024, Nature Medicine

Unusual reservoirs of AMR in a LMIC setting

- Samples from surgical site infections (SSIs), hospital surfaces (HSs) and arthropods (summer and winter 2016) were investigated to gauge the incidence and transmission of AMR pathogens in a public hospital in Pakistan
- bla_{NDM} was most commonly detected, with 15.5%, 15.1% and 13.3% of samples positive in SSIs, HSs and arthropods, respectively

Conclusions

- Healthcare systems differ in the type and abundance of AMR pathogens and therefore also the environmental niches that need to be screened
- LMIC settings might have local reservoirs relevant to the climate, and other socioeconomic differences
- Mapping the spread of multidrug-resistant organisms within healthcare systems will remain an important pillar of the global effort to reduce the spread of AMR in this most important setting

surbhi.malhotra@uantwerpen.be

University of Antwerp Laboratory of Medical Microbiology Vaccine and Infectious Disease Institute